
58

ESPM UNIT - V

Project Control and Process Instrumentation: Seven Core Metrics, Management Indicators, Quality Indicators, Life

Cycle Expectations Pragmatic Software Metrics, Metrics Automation.

Tailoring the Process: Process Discriminates.

The primary themes of a modern software development process tackle the central management issues of complex
software:

• Getting the design right by focusing on the architecture first

• Managing risk through iterative development

• Reducing the complexity with component based techniques
• Making software progress and quality tangible through instrumented change management
• Automating the overhead and bookkeeping activities through the use of round-trip engineering and integrated

environments

The goals of software metrics are to provide the development team and the management team with the following:
• An accurate assessment of progress to date
• Insight into the quality of the evolving software product

• A basis for estimating the cost and schedule for completing the product with increasing accuracy over time.

THE SEVEN CORE METRICS

Seven core metrics are used in all software projects. Three are management indicators and four are quality indicators.

a) Management Indicators

 Work and progress (work performed over time)

 Budgeted cost and expenditures (cost incurred over time)
 Staffing and team dynamics (personnel changes over time)

b) Quality Indicators

 Change traffic and stability (change traffic over time)
 Breakage and modularity (average breakage per change over time)
 Rework and adaptability (average rework per change overtime)

 Mean time between failures (MTBF) and maturity (defect rate over time)

59

The seven core metrics are based on common sense and field experience with both successful and unsuccessful metrics

programs. Their attributes include the following:

 They are simple, objective, easy to collect, easy to interpret and hard to misinterpret.

 Collection can be automated and non intrusive.
 They provide for consistent assessment throughout the life cycle and are derived from the evolving product

baselines rather than from a subjective assessment.

 They are useful to both management and engineering personnel for communicating progress and quality in a

consistent format.
 They improve fidelity across the life cycle.

MANAGEMENT INDICATORS

There are three fundamental sets of management metrics; technical progress, financial status staffing progress. By
examining these perspectives, management can generally assess whether a project is on budget and on schedule. The

management indicators recommended here include standard financial status based on an earned value system, objective

technical progress metrics tailored to the primary measurement criteria for each major team of the organization and staff
metrics that provide insight into team dynamics.

Work & Progress

The various activities of an iterative development project can be measured by defining a planned estimate of the work in

an objective measure, then tracking progress (work completed over time) against that plan), the default perspectives of
this metric would be as follows:

 Software architecture team: use cases demonstrated

 Software development team: SLOC under baseline change management, SCOs closed.

 Software assessment team: SCOs opened, test hours executed, evaluation criteria met
 Software management team: milestones completed

Budgeted Cost and Expenditures

To maintain management control, measuring cost expenditures over the project life cycle is always necessary. One

common approach to financial performance measurement is use of an earned value system, which provides highly

detailed cost and schedule insight.

Modern software processes are amenable to financial performance measurement through an earned value approach. The

basic parameters of an earned value system, usually expressed in units of dollars, are as follows:

 Expenditure Plan: the planned spending profile· for a project over its planned schedule. For most software

projects (and other labor-intensive projects), this profile generally tracks the staffing profile.

 Actual Progress: the technical accomplishment relative to the planned progress underlying the spending

profile. In a healthy project, the actual progress tracks planned progress closely.

 Actual Cost: the actual spending profile for a project over its actual schedule. In a healthy project, this profile
tracks the planned profile closely.

 Earned Value: the value that represents the planned cost of the actual progress.

 Cost variance: the difference between the actual cost and the earned value.

 Positive values correspond to over - budget situations; negative values correspond to under budget situations.
 Schedule Variance: the difference between the planned cost and the earned value. Positive values correspond

to behind-schedule situations; negative values correspond to ahead-of-schedule situations.

60

Staffing and Team Dynamics

An iterative development should start with a small team until the risks in the requirements and architecture have been

suitably resolved. Depending on the overlap of iterations and other project specific circumstance, staffing can vary. For
discrete, one of-a-kind development efforts (such as building a corporate information system), the staffing profile would

be typical.

It is reasonable to expect the maintenance team to be smaller than the development team for these sorts of
developments. For a commercial product development, the sizes of the maintenance and development teams may be the

same.

QUALITY INDICATORS

The four quality indicators are based primarily on the measurement of software change across evolving baselines of

engineering data (such as design models and source code).

Change Traffic and Stability

Overall change traffic is one specific indicator of progress and quality.

Change traffic is defined as the number of software change orders opened and closed over the life cycle This metric can

be collected by change type, by release, across all releases, by team, by components, by subsystem, and so forth.

Stability is defined as the relationship between opened versus closed SCOs.

61

Breakage and Modularity

Breakage is defined as the average extent of change, which is the amount of software baseline that needs rework (in

SLOC, function points, components, subsystems, files, etc).

Modularity is the average breakage trend over time. For a healthy project, the trend expectation is decreasing or stable

Rework and Adaptability
Rework is defined as the average cost of change, which is the effort to analyze, resolve and retest all changes to
software baselines.

Adaptability is defined as the rework trend over time. For a health project, the trend expectation is decreasing or stable.

MTBF and Maturity
MTBF is the average usage time between software faults. In rough terms, MTBF is computed by dividing the test hours
by the number of type 0 and type 1 SCOs. MTBF stands for Mean- Time- Between –Failures.

Maturity is defined as the MTBF trend over time

62

LIFE CYCLE EXPECTATIONS

There is no mathematical or formal derivation for using the seven core metrics. However, there were specific reasons for

selecting them:

 The quality indicators are derived form the evolving product rather than from the artifacts.
 They provide insight into the waster generated by the process. Scrap and rework metrics are a standard

measurement perspective of most manufacturing processes.

 They recognize the inherently dynamic nature of an iterative development process. Rather than focus on the

value, they explicitly concentrate on the trends or changes with respect to time.

 The combination of insight from the current value and the current trend provides tangible indicators for
management action.

PRAGMATIC SOFTWARE METRICS

Measuring is useful, but it doesn‟t do any thinking for the decision makers. It only provides data to help them ask the
right questions, understand the context, and make objective decisions.

The basic characteristics of a good metric are as follows:
1. It is considered meaningful by the customer, manager and performer. Customers come to software engineering

providers because the providers are more expert than they are at developing and managing software. Customers will
accept metrics that are demonstrated to be meaningful to the developer.

2. It demonstrates quantifiable correlation between process perturbations and business performance. Theonly real

organizational goals and objectives are financial: cost reduction, revenue increase and margin increase.

3. It is objective and unambiguously defined: Objectivity should translate into some form of numeric representation
(such as numbers, percentages, ratios) as opposed to textual representations (such as excellent, good, fair, poor).

Ambiguity is minimized through well understood units of measurement (such as staff-month, SLOC, change,

function point, class, scenario, requirement), which are surprisingly hard to define precisely in the software

engineering world.

4. It displays trends: This is an important characteristic. Understanding the change in a metric‟s value with respect to

time, subsequent projects, subsequent releases, and so forth is an extremely important perspective, especially for

today‟s iterative development models. It is very rare that a given metric drives the appropriate actiondirectly.

5. It is a natural by-product of the process: The metric does not introduce new artifacts or overhead activities; it is

derived directly from the mainstream engineering and management workflows.

63

6. It is supported by automation: Experience has demonstrated that the most successful metrics are those that are

collected and reported by automated tools, in part because software tools require rigorous definitions of the data
they process.

METRICS AUTOMATION

There are many opportunities to automate the project control activities of a software project. For managing against a

plan, a software project control panel (SPCP) that maintains an on-line version of the status of evolving artifacts
provides a key advantage.

To implement a complete SPCP, it is necessary to define and develop the following:

 Metrics primitives: indicators, trends, comparisons, and progressions.
 A graphical user interface: GUI support for a software project manager role and flexibility to support other roles
 Metric collection agents: data extraction from the environment tools that maintain theengineering notations .for the

various artifact sets.

 Metrics data management server: data management support for populating the metric displays of the GUI and
storing the data extracted by the agents.

 Metrics definitions: actual metrics presentations for requirements progress (extracted from requirements set

artifacts), design progress (extracted from design set artifacts), implementation progress (extracted from
implementation set artifacts), assessment progress (extracted from deployment set artifacts), and other progress

dimensions (extracted from manual sources, financial management systems, management artifacts, etc.)

 Actors: typically, the monitor and the administrator

Specific monitors (called roles) include software project managers, software development team leads, software

architects, and customers.

 Monitor: defines panel layouts from existing mechanisms, graphical objects, and linkages to project data; queries
data to be displayed at different levels of abstraction

 Administrator: installs thesystem; defines new mechanisms, graphical objects, and linkages; archiving functions;
defines composition and decomposition structures for displaying multiple levels of abstraction.

64

In this case, the software project manager role has defined a top-level display with four graphical objects.

1. Project activity Status: the graphical object in the upper left provides an overview of the status of the top-level

WBS elements. The seven elements could be coded red, yellow and green to reflect the current earned valuestatus.

(In Figure they are coded with white and shades of gray). For example, green would represent ahead of plan,
yellow would indicate within 10% of plan, and red would identify elements that have a greater than 10% cost or

schedule variance. This graphical object provides several examples of indicators: tertiary colors, the actual

percentage, and the current first derivative (up arrow means getting better, down arrow means getting worse).
2. Technical artifact status: the graphical object in the upper right provides an overview of the status of the evolving

technical artifacts. The Req light would display an assessment of the current state of the use case models and

requirements specifications. The Des light would do the same for the design models, the Imp light for the source
code baseline and the Dep light for the test program.

3. Milestone progress: the graphical object in the lower left provides a progress assessment of the achievementof

milestones against plan and provides indicators of the current values.

4. Action item progress: the graphical object in the lower right provides a different perspective of progress, showing
the current number of open and close issues.

65

The following top-level use case, which describes the basic operational concept of an SPCP, corresponds to a monitor

interacting with the control panel:
 Start the SPCP. The SPCP starts and shows the most current information that was saved when the user last used

the SPCP.

 Select a panel preference. The user selects from a list of previously defined default panel preference. The SPCP

displays the preference selected.

 Select a value or graph metric. The user selects whether the metric should be displayed for a given point in time or
in a graph, as a trend. The default for trends is monthly.

 Select to superimpose controls. The user points to a graphical object and requests that the control values for that
metric and point in time be displayed.

 Drill down to trend. The user points to a graphical object displaying a point in time and drills down to view the
trend for the metric.

 Drill down to point in time. The user points to a graphical object displaying a trend and drills down to view the
values for the metric.

 Drill down to lower levels of information. The user points to a graphical object displaying a point in time and
drills down to view the next level of information.

 Drill down to lower level of indicators. The user points to a graphical object displaying an indicator and drills

down to view the breakdown of the next level of indicators.

PROCESS DISCRIMINATES
In tailoring the management process to a specific domain or project, there are tow dimensions of discriminating factors:
technical complexity and management complexity.

The Figure illustrates discriminating these tow dimensions of process variability and shows some example project

applications. The formality of reviews, the quality control of artifacts, the priorities f concerns and numerous other
process instantiation parameters are governed by the point a project occupies in these two dimensions.

66

Figure summarizes the different priorities along the two dimensions.

Scale

 There are many ways to measure scale, including number of source lines of code, number of function points,

number of use cases, and number of dollars. From a process tailoring perspective, the primary measure of scale

is the size of the team. As the headcount increases, the importance of consistent interpersonal communications
becomes paramount. Otherwise, the diseconomies of scale can have a serious impact on achievement of the

project objectives.

 A team of 1 (trivial), a team of 5 (small), a team of 25 (moderate), a team of 125 (large), a team of 625 (huge),
and so on. As team size grows, a new level of personnel management ins introduced at roughly each factor of 5.

This model can be sued to describe some of the process differences among projects of different sizes.

 Trivial-sized projects require almost no management overhead (planning, communication, coordination,

progress assessment, review, administration).
 Small projects (5 people) require very little management overhead, but team leadership toward a common

objective is crucial. There is some need to communicate the intermediate artifacts among teammember.

 Moderate-sized projects (25 people) require moderate management overhead, including a dedicated software
project manager to synchronize team workflows and balance resources.

 Large projects (125 people) require substantial management overhead including a dedicated software project

manager and several subproject managers to synchronize project-level and subproject-level workflows and to
balance resources.Project performance is dependent on average people, for two reasons:

67

a) There are numerous mundane jobs in any large project, especially in the overhead workflows.

b) The probability of recruiting, maintaining and retaining a large umber of exceptional people is small.
 Huge projects (625 people) require substantial management overhead, including multiple software project

managers an many subproject managers to synchronize project-level and subproject-level workflows and to

balance resources.

Stakeholder Cohesion or Contention

The degree of cooperation and coordination among stakeholders (buyers, developers, users, subcontractors and
maintainers, among others) can significantly drive the specifies of how a process is defined. This process parameter can

range from cohesive to adversarial. Cohesive teams have common goals, complementary skills and close

communications. Adversarial teams have conflicting goals, completing or incomplete skills and less-than-open
communications.

Process Flexibility or Rigor

The degree of rigor, formality and change freedom inherent in a specific project‟s “contract” (vision document, business

case and development plan) will have a substantial impact on the implementation of the project‟s process. For very
loose contracts such as building a commercial product within a business unit of a software company (such as a

Microsoft application or a rational software corporation development tool), management complexity is minimal. In these

68

sorts of development processes, feature set, time to market, budget and quality can all be freely traded off and changed

with very little overhead.

Process Maturity
The process maturity level of the development organization, as defined by thesoftware engineering Institute‟s capability

maturity model is another key driver of management complexity. Managing a mature process (level 3 or higher) is far

simpler than managing an immature process (level 1 and 2). Organizations with a mature process typically have a high

level of precedent experience in developing software and a high level of existing process collateral that enables
predictable planning and execution of the process. Tailoring a mature organization‟s process for a specific project is

generally a straight forward task.

Architectural Risk
The degree of technical feasibility demonstrated before commitment to full-scale production is an important dimension

of defining a specific project‟s process. There are many sources of architectural risk. Some of the most important and

recurring sources are system performance (resource utilization, response time, throughput, accuracy), robustness to

change (addition of new features, incorporation of new technology, adaptation to dynamic operational conditions) and

69

system reliability (predictable behavior, fault tolerance). The degree to which these risks can bed eliminated before

construction begins can have dramatic ramifications in the process tailoring.

Domain Experience

The development organization‟s domain experience governs its ability to converge on an acceptable architecture in a

minimum number of iterations. An organization that has built five generations of radar control switches may be able to

converge on adequate baseline architecture for a new radar application in two or three prototype release iterations. A
skilled software organization building its first radar application may require four or five prototype releases before

converging on an adequate baseline.

EXAMPLE: SMALL-SCALE PROJECT VERSUS LARGE-SCALE PROJECT
 An analysis of the differences between the phases, workflows and artifacts of two projects on opposite ends of

the management complexity spectrum shows how different two software project processes can be Table 14-7

illustrates the differences in schedule distribution for large and small project across the life-cycle phases. A

small commercial project (for example, a 50,000 source-line visual basic windows application, built by a team

70

of five) may require only 1 month of inception, 2 months of elaboration, 5 months of construction and 2 months

of transition. A large, complex project (for example, a 300,000 source-line embedded avionics program, built by
a team of 40) could require 8 months of inception, 14 months of elaboration, 20 months of construction, and 8

months of transition. Comparing the ratios of the life cycle spend in each phase highlights the obvious

differences.

 One key aspect of the differences between the two projects is the leverage of the various process components in

the success or failure of the project. This reflects the importance of staffing or the level of associated risk

management.

The following list elaborates some of the key differences in discriminators of success.

 Design is key in both domains. Good design of a commercial product is a key differentiator in the marketplace

and is the foundation for efficient new product releases. Good design of a large, complex project is the
foundation for predictable, cost-efficient construction.

 Management is paramount in large projects, where the consequences of planning errors, resource allocation

errors, inconsistent stakeholder expectations and other out-of-balance factors can have catastrophic
consequences for the overall team dynamics. Management is far less important in a small team, where

opportunities for miscommunications are fewer and their consequences less significant.

 Deployment plays a far greater role for a small commercial product because there is a broad user base of diverse
individuals and environments.

	TRANSITIONING TO AN ITERATIVE PROCESS
	ESPM UNIT - V
	THE SEVEN CORE METRICS
	a) Management Indicators
	b) Quality Indicators
	MANAGEMENT INDICATORS
	Work & Progress
	Budgeted Cost and Expenditures
	Staffing and Team Dynamics
	QUALITY INDICATORS
	Change Traffic and Stability
	Breakage and Modularity
	Rework and Adaptability
	MTBF and Maturity
	LIFE CYCLE EXPECTATIONS
	PRAGMATIC SOFTWARE METRICS
	METRICS AUTOMATION
	PROCESS DISCRIMINATES
	Scale
	Stakeholder Cohesion or Contention
	Process Flexibility or Rigor
	Process Maturity
	Architectural Risk
	Domain Experience
	EXAMPLE: SMALL-SCALE PROJECT VERSUS LARGE-SCALE PROJECT

